Roles of stress-activated protein kinases in the replication of Singapore grouper iridovirus and regulation of the inflammatory responses in grouper cells.
نویسندگان
چکیده
Stress-activated protein kinases (SAPKs), including p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK), are usually activated in response to different environmental stimuli, including virus infection. In the present study, the roles of SAPKs during Singapore grouper iridovirus (SGIV) infection were investigated in fish cells. The results showed that increased phosphorylation of JNK1/2 and p38 MAPK occurred during active replication of SGIV in grouper cell cultures. Moreover, downstream effectors (c-Jun, MAPK-activated protein kinase 2, p53, activator protein 1, Myc and nuclear factor of activated T cells) were activated after SGIV infection, suggesting that SGIV replication activated the JNK and p38 MAPK signalling pathways. Notably, using specific inhibitors, it was found that viral gene transcripts, protein expression and viral titres were not affected by inhibition of p38 MAPK but were suppressed significantly by inhibiting JNK1/2 activation. In addition, transcription of grouper immune genes including interferon regulatory factor 1, interleukin-8 and tumour necrosis factor alpha (TNF-α) were regulated by JNK, whilst only TNF-α was regulated by p38 MAPK. It is proposed that the JNK pathway is important for SGIV replication and modulates the inflammatory responses during virus infection.
منابع مشابه
Singapore grouper iridovirus protein VP088 is essential for viral infectivity
Viral infection is a great challenge in healthcare and agriculture. The Singapore grouper iridovirus (SGIV) is highly infectious to numerous marine fishes and increasingly threatens mariculture and wildlife conservation. SGIV intervention is not available because little is known about key players and their precise roles in SGVI infection. Here we report the precise role of VP088 as a key player...
متن کاملSingapore grouper iridovirus-encoded semaphorin homologue (SGIV-sema) contributes to viral replication, cytoskeleton reorganization and inhibition of cellular immune responses.
Semaphorins are a large, phylogenetically conserved family of proteins that are involved in a wide range of biological processes including axonal steering, organogenesis, neoplastic transformation, as well as immune responses. In this study, a novel semaphorin homologue gene belonging to the Singapore grouper iridovirus (SGIV), ORF155R (termed SGIV-sema), was cloned and characterized. The codin...
متن کاملJNK1 Derived from Orange-Spotted Grouper, Epinephelus coioides, Involving in the Evasion and Infection of Singapore Grouper Iridovirus (SGIV)
c-Jun N-terminal kinase (JNK) regulates cellular responses to various extracellular stimuli, environmental stresses, pathogen infections, and apoptotic agents. Here, a JNK1, Ec-JNK1, was identified from orange-spotted grouper, Epinephelus coioides. Ec-JNK1 has been found involving in the immune response to pathogen challenges in vivo, and the infection of Singapore grouper iridovirus (SGIV) and...
متن کاملSingapore grouper iridovirus (SGIV) encoded SGIV-miR-13 attenuates viral infection via modulating major capsid protein expression.
Singapore grouper iridovirus (SGIV) encodes a number of microRNAs (miRNAs) during infection. Among these, SGIV-miR-13 has robust expression at early stage after SGIV inoculation, raising a huge possibility that it participates in the viral infection. In the present study, we found that SGIV-miR-13 overexpression led to a significant reduction in viral load in cultured fish cells with SGIV infec...
متن کاملmiR-homoHSV of Singapore Grouper Iridovirus (SGIV) Inhibits Expression of the SGIV Pro-apoptotic Factor LITAF and Attenuates Cell Death
Growing evidence demonstrates that various large DNA viruses could encode microRNAs (miRNAs) that regulate host and viral genes to achieve immune evasion. In this study, we report that miR-homoHSV, an miRNA encoded by Singapore grouper iridovirus (SGIV), can attenuate SGIV-induced cell death. Mechanistically, SGIV miR-homoHSV targets SGIV ORF136R, a viral gene that encodes the pro-apoptotic lip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of general virology
دوره 92 Pt 6 شماره
صفحات -
تاریخ انتشار 2011